FHB Logo Facebook LinkedIn Email Pinterest Twitter X Instagram Tiktok YouTube Plus Icon Close Icon Navigation Search Icon Navigation Search Icon Arrow Down Icon Video Guide Icon Article Guide Icon Modal Close Icon Guide Search Icon Skip to content
Subscribe
Log In
  • How-To
  • Design
  • Tools & Materials
  • Restoration
  • Videos
  • Blogs
  • Forum
  • Magazine
  • Members
  • FHB House
  • Podcast
Log In

Fine Homebuilding Project Guides

Insulation

Guide Home
  • Energy Efficiency
  • Air-Sealing
  • Choosing Insulation
  • Installing Insulation
  • Water Management
Tools & Materials

Combining Sheathing With a WRB and Air Barrier

Building-science expert Peter Yost takes an in-depth look at two sheathing systems that integrate a structural panel with bulk water and air management.

By Peter Yost
  • X
  • facebook
  • linkedin
  • pinterest
  • email
  • add to favorites Log in or Sign up to save your favorite articles
The Zip and ForceField sheathing systems combine structural sheathing with both water and air barriers.
Image Credits: Image #1: Zip sheathing - Elden Lindamood; ForceField sheathing: Georgia-Pacific

Full Disclosure: First, there are a lot of different ways to get continuous air and water control layers on the exterior of a building enclosure. You can use housewrap, taped-and-sealed rigid foam insulation, liquid-applied membrane, or either the Huber Zip or Georgia-Pacific ForceField system. Each approach has strengths and weaknesses.

All things considered, I prefer the performance delivered by Zip System sheathing and tape. But when I learned about ForceField, I decided to dig into how these two systems compare.

Second, I have done quite a bit of work with Huber Engineered Woods, the manufacturer of Zip sheathing, because of the company’s support for the Wingnut Test Facility and a new Hanley-Wood educational series on high-performance building (Home Building Crossroads). Their support to my work is technical, not financial. I did receive test sample materials from both Georgia-Pacific and Huber for this blog.

What do you call these two systems?

It can be difficult to even just name these product systems. Huber states that “Zip System sheathing and tape is an innovative structural roof and wall system with an integrated water and air barrier.”

Georgia-Pacific states, “The ForceField air and water barrier system from Georgia-Pacific consists of structural engineered wood sheathing panels laminated with a proprietary air and water barrier.”

So, these systems combine structural sheathing with a water-resistive barrier (WRB) and an air barrier.

Third-party assessments

The primary third-party reference for the technical properties and performance of the Zip system is ICC-ES Report ESR-1474 (re-issued 10/2016).

For ForceField, the primary third-party reference is APA Product Report PR-N136 (revised December 14, 2016).

How are the two systems similar?

The common elements of Zip and ForceField are:

  • (1) 7/16-inch OSB panels, rated as Exposure 1, Department of Commerce Product Standard 2 (DOC PS 2), Structural 1-rated. Note that all Zip panel thicknesses are available Structural 1-rated; ForceField offers Structural 1 as an option for ForceField.
  • (2) Each has a proprietary, vapor-permeable, factory-applied “overlay” applied to the exterior face of the OSB.
  • (3) Each system includes a proprietary, pressure-sensitive acrylic (PSA) or modified-acrylic tape. (Neither tape has release paper.)
  • (4) Easy system includes supplemental flashing for rough openings and sheathing margins (a proprietary GP flashing tape for ForceField and proprietary stretch flashing tape and liquid sealant for use with Zip System panels).

How are the two systems different?

  • (1) Lamination of WRB facer – Zip’s proprietary overlay is an integral part of the OSB manufacturing process; that means that the overlay (or membrane) is fused during the compression formation of the bed of strands and resins into OSB panels. The ForceField System proprietary overlay is glue-laminated to the OSB panels after the fact.
  • (2) The OSB face used for the WRB differs – Zip System panels uses the “rough” side of their OSB for the WRB overlay; ForceField System uses the “smooth” side of their OSB for the WRB overlay.
  • (3) Roof sheathing – All Zip System panels are approved as a structural sheathing panel and underlayment for roofs; ForceField System panels are not.
  • (4) Compliance with key ICC Acceptance Criteria (AC) – Zip System panels full comply with AC310 — Acceptance Criteria for Water-Resistive Membranes Factory-Bonded to Wood-Based Structural Sheathing, Used as Water-Resistive Barriers. Zip tape fully complies with AC148 — Acceptance Criteria for Flexible Flashing Materials. On the other hand, ForceField System panels and tape are not documented as compliant with these key standards. (Note: In images #2 through #4, below, samples of Zip System panel are subjected to an “Overlay Bond Durability Test,” a test modified from AC310. It’s frankly remarkable that after boiling and drying and subjected to pull-apart stress, the failure is not at the bond between the WRB overlay and the OSB; it fails largely by separating strands from the surface of the OSB. It’s not possible to conduct this test on ForceField System sheathing; the WRB facer or overlay delaminates completely from the OSB during the boiling phase of the test.)

boil the sheathing
The first step in the Overlay Bond Durability test is to boil the sheathing panel samples for one hour. Image Credit: Images #2 through #4: JM Huber

each sample hot-melt glued to an aluminum loading block
With each sample hot-melt glued to an aluminum loading block, they are ready to be tested to failure (pulled apart) by the Instron Mechanical Testing System (MTS). The perimeter of the contact area between the block and the panel is scored to force the failure at the facer/OSB interface rather than at the more typical fault line of the OSB core.

the area of fault or split is between the top outermost layer of OSB strands
This post-test image shows that most of the time, most of the area of fault or split is between the top outermost layer of OSB strands, not between the facer and the OSB. In other words, the failure is largely within the OSB substrate, and is not due to failure of the adhesion of the facer.

The tapes also differ:

  • (1) Zip System tape is much thicker than ForceField tape (Zip – 0.012 inch; ForceField – 0.003 inch) and has a polyolefin backer. The ForceField tape backer is described as a polymeric film.
  • (2) Zip System tape comes 90 feet to a roll; ForceField System tape comes 180 feet in a roll. ForceField System tape can be hand-torn to length; Zip System tape must be cut to length.
  • (3) When installed, Zip System tape must be rolled as stipulated in the manufacturer’s directions and not loaded for a minimum of one hour, while the ForceField System tape can be applied with just hand pressure and achieves its full adhesion nearly immediately.
  • (4) ForceField system tape is approved by the manufacturer for installation down to 0°F; Zip System tape is currently manufacturer-approved down to 20°F.

Finally, the warranties differ:

  • (1) The ForceField warranty is described as “Lifetime Limited” to the original owner, and is non-transferable. The Zip system warranty is described as “30-year System Limited” to the original owner.
  • (2) The Zip System warranty covers all system components: OSB panels, Zip overlay, Zip tape, and Zip liquid flash; ForceField limits their warranty to just their OSB panels.
  • (3) Coverage – ForceField’s warranty states, “In the event of Product Delamination… GP will… either repair or replace the nonconforming portion of the Product, or reimburse you twice the original retail purchase price.” The Zip System warranty states, “…the system …will satisfy the Air and Water Resistance Properties Test…” and “[the warranty] is limited to the repair or replacement, at HEW’s option, of materials giving rise to the failure to comply with this warranty.”

Wingnut testing of the two systems

Many of you may know about my frustration with laboratory standardized testing under conditions that are fundamentally different from what happens on job sites. (Please see Two Wingnuts Describe Their Backyard Tape Tests or the BuildingGreen blog content, Sticky Business, for more information on the work of the Wingnut Test Facility).

The following information is strictly anecdotal, and represents my own attempt to stress each system, with an admittedly woeful sample size of one sample per test.

Straight-Pull Test (see Images #5 and #6, below).

50 pounds with no adhesion failure
The fish scale is reading about 50 pounds with no adhesion failure or give across the taped joint of the two ForceField 8″ by 8″ panels.Image Credit: Images #5 through #15: Peter Yost

no adhesion failure and slight give
With the fish scale reading about 50 pounds, there is no adhesion failure and slight give in the Zip tape expressed at the panel joint.

I followed the manufacturer’s installation instructions for each system and used a “fish scale” to measure how much force the system withstood. You can see that both systems have very strong bonds between the facer and the PSA tape, withstanding up to 50 pounds of force in this test. Note that the Zip System tape stretches with the force while the ForceField System tape has little to no give.

Perpendicular-Load Test Split Substrates Including Window Flange (see Images #7 through #12, below).

the slot represents the gap between the rough opening and the window
In this test, the slot represents the gap between the rough opening and the window. The PSA tape will cover the slot, with half of the tape adhering to the panel and half adhering to the window flange (either PVC or aluminum). The flange is fastened to the substrate. (In this image, the substrate is OSB; in the tests for this work the substrates were Zip and ForceField panels).

distribute the force of the 1 pound hanging weight across the tape
To distribute the force of the 1 pound hanging weight across the tape, a 3/16-inch diameter metal rod is included under the tape along the slot.

ForceField tape has come off the ForceField panel
The ForceField tape has come off the ForceField panel but is still marginally adhered to the PVC flange.

ForceField tape is marginally adhered to the ForceField panel
The ForceField tape is marginally adhered to the ForceField panel but has let go from the aluminum window flange.

The Zip tape remains adhered to both the Zip panel and the aluminum flange.
The Zip tape remains adhered to both the Zip panel and the aluminum flange.

The Zip tape remains adhered to both the Zip panel and the PVC flange.
The Zip tape remains adhered to both the Zip panel and the PVC flange.

This test was developed to better represent the forces that tapes and substrates could experience at a window installation, where one-half of the tape adheres to the wall sheathing and one-half adheres to the window flange. (We used both PVC and aluminum flanges.) A 3/8-inch slot in the panel represents the gap between the round opening and the window unit.

For all the details of this test, see the “Wingnut Test Facility – WTF Field- and Benchtop-Testing of Building Materials & Systems, BuildingGreen, Inc. September 16, 2015.”

When I set up this test in my garage recently, I followed the protocol and had the tests underway at around noon on Thursday (June 15, 2017), doing the initial wetting with a spray bottle. I applied 10 squirts (about 6 milliliters) to the front and back of each panel. (When spraying the back side where water could “pool,” I inverted the panel to “drain” any standing water out of the slot).

When I returned to the garage at 5:30 p.m., both ForceField setups had failed, while both Zip System sheathing and tape setups were still holding. As you can see from the photos, on the setup with aluminum flange, the tape let go at the flange, while on the setup with the PVC flange, the tape let go of the ForceField panel.

In the past, when testing multiple tapes, this test has gone on for weeks and then months, with some systems failing in the first day. In particular, the Zip System sheathing and tape setups persisted for more than a year of outdoor temperature and relative humidity swings and repeated wetting on both surfaces. And while other PSA tapes worked better on either the PVC flange or the aluminum flange, Zip System tape held just fine with both PVC and aluminum window flanges.

Wetting, then perpendicular pull, test (Images #13 through #15).

Two 8" by 8" ForceField panels are held together by a length of ForceField tape running vertically from top to bottom.
Two 8″ by 8″ ForceField panels are held together by a length of ForceField tape running vertically from top to bottom. You can see beads of water on the face of the ForceField panels and tape. The same setup was used for the Zip system.

 

One ForceField panel is clamped to the trailer frame while the other panel is held vertically and pulled straight up.
One ForceField panel is clamped to the trailer frame while the other panel is held vertically and pulled straight up. The fish scale is reading about 5 pounds, the force required to pull the ForceField tape off the clamped horizontal ForceField panel. For the equivalent Zip system setup, the fish scale read 20 pounds (the force required to make the Zip tape release from the clamped horizontal panel).

The photo shows the two horizontal panels used in the wetting and perpendicular pull test.
The photo shows the two horizontal panels used in the wetting and perpendicular pull test. Note that the ForceField facer has become “rougher” as the result of the wetting and the bottom of the ForceField panel shows some delamination of the facer from the panel. To the right, the Zip panel shows no surface change as the result of wetting or the pull test.

In this test, I drilled a round hole in one square, taped that square to another square, and then wetted the hanging results about 10 times, spraying water over the top edge of the top square, on the face of both squares and tape, and around the round hole. I did this to simulate the exposure to rain that could happen if the panels were up on a building but not yet taped or sealed around penetrations.

When I did the perpendicular pull test, the average force to separate the tape from the panel was 5 pounds for the ForceField System sheathing and tape and 20 pounds for the Zip System sheathing and tape. You can see in the last photo that the surface of the ForceField has become “rougher” with the repeated wetting, and some of the ForceField System facer has pulled off, while the Zip System square shows no signs of any facer delamination.

I did not observe any deterioration. Nor did I test around the holes I drilled. (Essentially, I ran out of time on this test.)

Summing up

Any system relying on PSA tape for both watertightness and airtightness is breaking the first law of building science: physics trumps chemistry. Having said that, it is almost impossible to achieve high-performance levels of airtightness without sticky chemistry. So if you are going to break that first law by having the leading top edge of the tape not protected by a lap, you had better have a lot of faith in the bond between the tape and all its substrates.

The second law of building science is to shelter or protect your air and water management systems. But how do you shelter them without burying them where they are difficult or impossible to inspect, repair, or replace?

I include this context to emphasize just how important are the bonds between substrates and tapes, both for the Zip System and the ForceField System. They have to maintain their bonds for the life of the assembly, because inspection and repair or replacement means taking the assembly apart.

The bonds between the Zip System facer and OSB, between the Zip System tape and the Zip facer, and the the bond between the Zip tape and key assembly materials such as PVC and aluminum window flanges, are all more robust than those of the ForceField system. This is supported by both standardized test results and Wingnut Test Facility benchtop testing.

Some might argue that these bonds represent overkill in the Zip System; perhaps the ForceField System bonds are perfectly sound and represent an improvement over other approaches to air and water barrier systems. For my money, thought, the consequences of being wrong on this are too critical to go with a reduced safety margin.

A final note: For the best bond, PSA tape should be applied on dry, clean substrates under mild temperature conditions. But perhaps the most important condition is pressure. It’s pressure that activates or “wets” the adhesive and allows it to flow so that it achieves maximum surface area contact with the substrate. You can’t press a tape too much, but you can press it too little!


Originally published on GreenBuildingAdvisor.com.

Fine Homebuilding Recommended Products

Fine Homebuilding receives a commission for items purchased through links on this site, including Amazon Associates and other affiliate advertising programs.

Utility Knife

This utility knife is well-made and comes in handy when cutting rigid foam insulation. You can extend the snap blade to cut through a 2-inch foam board.
Buy at Amazon

Respirator Mask

A full-face respirator prevents fog up and is more comfortable than constantly replacing particle makes that get fouled or sweaty and is ideal for the pro installer.
Buy at Amazon

Loctite Foamboard Adhesive

When foam board installations require an adhesive, it’s important to use compatible products like this adhesive from Loctite.
Buy at Amazon
Previous: Tyvek Drainable Membrane Next: Six Rules for Polyethylene

Guide

Insulation

Chapter

Water Management

Sign up for eletters today and get the latest how-to from Fine Homebuilding, plus special offers.

Signing you up...

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
See all newsletters
See all newsletters

Log in or create an account to post a comment.

Sign up Log in

Become a member and get full access to FineHomebuilding.com

Insulation

Insulation

Trusted, comprehensive guidance from the pros for a home that is healthy, comfortable, and energy efficient

View Project Guide

View All Project Guides »

Become a member and get unlimited site access, including the Insulation Project Guide.

Start Free Trial

Energy Efficiency
  • Understanding Energy and Houses
  • Building Energy-Efficient Homes
Air-Sealing
  • Air-Sealing Basics
  • Air-Sealing Tools and Materials
  • Foundations and Floors
  • Walls, Windows, and Doors
  • Attics and Roofs
Choosing Insulation
  • Insulation Basics
  • Material Choices
Installing Insulation
  • Insulating Attics and Roofs
  • Insulating Walls
  • Insulating Floors, Footings, and Slabs
  • Insulating Foundation Walls
Water Management
  • Water-Management Principles
  • Materials
  • Installation Methods

Fine Home Building

Newsletter Sign-up

  • Fine Homebuilding

    Home building tips, offers, and expert advice in your inbox.

  • Green Building Advisor

    Building science and energy efficiency advice, plus special offers, in your inbox.

  • Old House Journal

    Repair, renovation, and restoration tips, plus special offers, in your inbox.

Signing you up...

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
See all newsletters

Follow

  • Fine Homebuilding

    Dig into cutting-edge approaches and decades of proven solutions with total access to our experts and tradespeople.

    Start Free Trial Now
    • Facebook
    • Instagram
    • X
    • LinkedIn
  • GBA Prime

    Get instant access to the latest developments in green building, research, and reports from the field.

    Start Free Trial Now
    • Facebook
    • YouTube
  • Old House Journal

    Learn how to restore, repair, update, and decorate your home.

    Subscribe Now
    • Facebook
    • Instagram
    • X
  • Fine Homebuilding

    Dig into cutting-edge approaches and decades of proven solutions with total access to our experts and tradespeople.

    Start Free Trial Now
    • Facebook
    • Instagram
    • X
    • LinkedIn
  • GBA Prime

    Get instant access to the latest developments in green building, research, and reports from the field.

    Start Free Trial Now
    • Facebook
    • YouTube
  • Old House Journal

    Learn how to restore, repair, update, and decorate your home.

    Subscribe Now
    • Facebook
    • Instagram
    • X

Membership & Magazine

  • Online Archive
  • Start Free Trial
  • Magazine Subscription
  • Magazine Renewal
  • Gift a Subscription
  • Customer Support
  • Privacy Preferences
  • About
  • Contact
  • Advertise
  • Careers
  • Terms of Use
  • Site Map
  • Do not sell or share my information
  • Privacy Policy
  • Accessibility
  • California Privacy Rights

© 2025 Active Interest Media. All rights reserved.

Fine Homebuilding receives a commission for items purchased through links on this site, including Amazon Associates and other affiliate advertising programs.

  • Home Group
  • Antique Trader
  • Arts & Crafts Homes
  • Bank Note Reporter
  • Cabin Life
  • Cuisine at Home
  • Fine Gardening
  • Fine Woodworking
  • Green Building Advisor
  • Garden Gate
  • Horticulture
  • Keep Craft Alive
  • Log Home Living
  • Military Trader/Vehicles
  • Numismatic News
  • Numismaster
  • Old Cars Weekly
  • Old House Journal
  • Period Homes
  • Popular Woodworking
  • Script
  • ShopNotes
  • Sports Collectors Digest
  • Threads
  • Timber Home Living
  • Traditional Building
  • Woodsmith
  • World Coin News
  • Writer's Digest
Active Interest Media logo
X
X
This is a dialog window which overlays the main content of the page. The modal window is a 'site map' of the most critical areas of the site. Pressing the Escape (ESC) button will close the modal and bring you back to where you were on the page.

Main Menu

  • How-To
  • Design
  • Tools & Materials
  • Video
  • Blogs
  • Forum
  • Project Guides
  • Reader Projects
  • Magazine
  • Members
  • FHB House

Podcasts

  • FHB Podcast
  • ProTalk

Webinars

  • Upcoming and On-Demand

Podcasts

  • FHB Podcast
  • ProTalk

Webinars

  • Upcoming and On-Demand

Popular Topics

  • Kitchens
  • Business
  • Bedrooms
  • Roofs
  • Architecture and Design
  • Green Building
  • Decks
  • Framing
  • Safety
  • Remodeling
  • Bathrooms
  • Windows
  • Tilework
  • Ceilings
  • HVAC

Magazine

  • Current Issue
  • Past Issues
  • Magazine Index
  • Subscribe
  • Online Archive
  • Author Guidelines

All Access

  • Member Home
  • Start Free Trial
  • Gift Membership

Online Learning

  • Courses
  • Project Guides
  • Reader Projects
  • Podcast

More

  • FHB Ambassadors
  • FHB House
  • Customer Support

Account

  • Log In
  • Join

Newsletter

Get home building tips, offers, and expert advice in your inbox

Signing you up...

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
See all newsletters
See all newsletters

Follow

  • X
  • YouTube
  • instagram
  • facebook
  • pinterest
  • Tiktok

Join All Access

Become a member and get instant access to thousands of videos, how-tos, tool reviews, and design features.

Start Your Free Trial

Subscribe

FHB Magazine

Start your subscription today and save up to 70%

Subscribe

You have 1 free article remaining.

Get complete site access, including thousands of videos, how-to tips, tool reviews, and design features.

Start your FREE trial

Already a member? Log in

We hope you’ve enjoyed your free articles. To keep reading, become a member today.

Get complete site access to expert advice, how-to videos, Code Check, and more, plus the print magazine.

Start your FREE trial

Already a member? Log in

Privacy Policy Update

We use cookies, pixels, script and other tracking technologies to analyze and improve our service, to improve and personalize content, and for advertising to you. We also share information about your use of our site with third-party social media, advertising and analytics partners. You can view our Privacy Policy here and our Terms of Use here.

Cookies

Analytics

These cookies help us track site metrics to improve our sites and provide a better user experience.

Advertising/Social Media

These cookies are used to serve advertisements aligned with your interests.

Essential

These cookies are required to provide basic functions like page navigation and access to secure areas of the website.

Delete My Data

Delete all cookies and associated data